

The Czech Centre for Phenogenomics:

Design, Generation, and Archiving of your Mutant Mouse Strain

Maja Sabol, PhD & Zuzana Ileninová, PhD

What is CCP?

Large national infrastructure for supporting geneticallymodified rodent (mouse and rat) research

Why?

- to produce a comprehensive 'encyclopedia' of gene function
 - identify causative factors of human diseases
 - Identify novel targets for therapeutic intervention
- to produce high-quality data
 - scientific reference catalog,
 - comprehensive meta-analyses

How?

- standardized procedures and pipelines
- quality control measures and cross-validation
- membership in global networks

European Research Infrastructure for phenotyping and archiving of model mammalian genomes

It includes:

- Mouse Clinics from Europe and Canada
- **EMMA Archiving and Distribution Nodes**
- European Bioinformatics Institute (EMBL-EBI)

The European Mouse Mutant Archive

- non-profit repository for the collection, archiving (via cryopreservation) and distribution of relevant mutant strains essential for basic biomedical research
- Now part of Infrafrontier

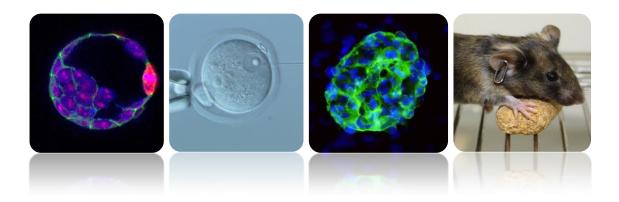
International Mouse Phenotyping Consortium

- 18 research institutions and 5 national funders
- broad-based, systematic genome-wide phenotyping project of knockout mice
- long-lasting resource of mammalian gene function information

International Mouse Phenotyping Resource of Standardized Screens

- standardized phenotyping protocols
- definitions of the phenotyping Pipelines and mandatory and optional Procedures and Parameters
- data collected by international mouse clinics

for Phenogenomics



Basic facts

- unique in the Czech Republic, large national infrastructure
- 7200 m², 24 mil. €
- 2 locations: Vestec (20 000 cages) and IMG-Prague (10 000 cages), mouse+rat
- one of 5 in Europe, and of 12 in the world
- International centre, open access

Our mission

comprehensive, systematic and standardized screening of rodent phenotypes

cost-effective, demand-driven support of the research community

CCP: Management & Organization structure

Executive

Executive Director
Module heads
Internal scientific advisors

Head: I. Beck

Unit (head):

- Targeting
 (B. Schuster)
- ES cell technologies & model production

 (I. Barnetova)
- Genotyping & breeding (J. Kopkanova)
- Archiving & distribution
 (I. Beck)

PM: Phenotyping Module

Head: T. Epp

Unit (head):

- Histo-pathology (I. Kanchev)
- Immunology (M. Reinis)
- Cardio-vascular unit (M. Durik)
- Metabolism (J. Polak)
- Biochemistry (K. Chalupsky)
- Embryology (K. Chawengsaksophak)
- Lung function (B. Piavaux)
- Neurobehavioral (A. Zahorodna-Kubik)

To be built in 2015-2016

- Dysmorphology & whole body imaging (J. Prochazka)
- Bioinformatics head: n.n.
- Reproduction head: n.n.

AFM: Animal Facility Module

Head: J. Honetschlager

Unit (head):

CCP - Animal facility S002/BIOCEV (Vestec)

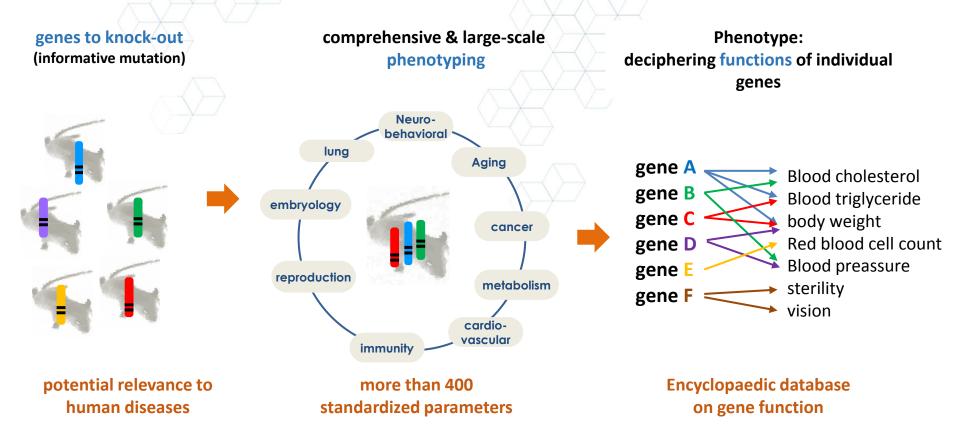
(P. Neradil)

 CCP - Animal facility IMG/ Campus Krc-Prague

(M. Buryova)

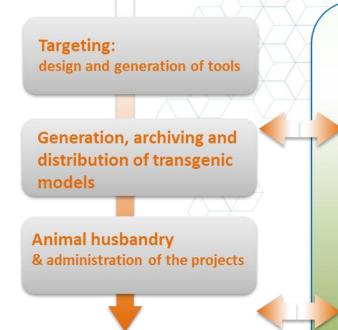
To be built in 2016:

 Antibody production & immunization - head: n.n. (shared PM & AFM unit)



Phenogenomics

Systematic phenotyping of animal models for annotation of gene function



activities

Phenotyping

- systemic primary
- individual & secondary

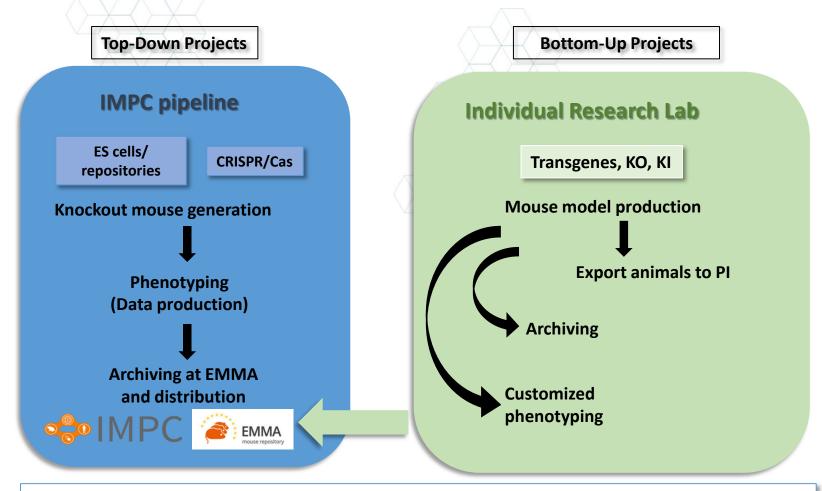
Biomedical community

Top-down

Large scale projects:

IMPC & INFRAFRONTIER

Bottom-up


Individual user research projects

Mouse production, archiving and genotyping at the CCP

The goal of the International Mouse Phenotyping Consortium (IMPC) is to discover functional insight for every gene by generating and systematically phenotyping 20,000 knockout mouse strains.

1. Transgenic-archiving module

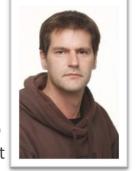
Inken M. Beck, PhD Head of Transgenic and archiving module

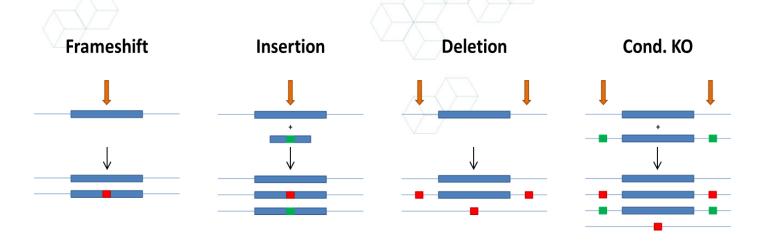
TARGETING

ES CELL
TECHNOLOGIES &
MODEL
PRODUCTION

GENOTYPING AND BREEDING

ARCHIVING & DISTRIBUTION





Björn Schuster, PhD head of Targeting unit

Targeting using programmable nucleases (TALENs, CRISPR/Cas9)

- Generation of TALENs targeting ROSA26 locus
- Developed reporter system to test functionality of CRISPRs and TALENs in vitro

Mouse model (KO) production for IMPC in 2015: 50 novel genes CRISPR – assisted, non-conditional Cooperation with SIGMA-Aldrich - the only facility in Europe

Sigma-Aldrich and the Institute of Molecular Genetics, Czech Center for Phenogenomics, Establish CRISPR Core Lab Partnership

ST. LOUIS – January 27, 2015 – <u>Sigma-Aldrich Corporation's</u> (NASDAQ: SIAL) Research business unit, which supports scientific research by supplying products, services and solutions, today announced it has entered into a new gene editing partnership with the Institute of Molecular Genetics (IMG) at the Czech Center for Phenogenomics (CCP) in Prague. Under the partnership, Sigma-Aldrich will provide the Transgenic Module at IMG/CCP with Sigma CRISPR technology, including reagents, experimental design consultation and dedicated gene editing bioinformaticians. The partnership is intended to accelerate academic services dedicated to transgenic animal development using CRISPR technology.

"We are pleased to partner with the Czech Center for Phenogenomics at the IMG to advance their mission to become the leading European transgenic animal supplier," said Sean Muthian, Ph.D., MBA, Director of Strategic Marketing and Collaborations at Sigma-Aldrich. "The Sigma-Aldrich CRISPR Core Lab Partnership helps accelerate the pace of translational research by removing the design and production hurdles with CRISPR or zinc finger nucleases, allowing scientists at the transgenic facility to focus on developing animal models that reflect the human condition."

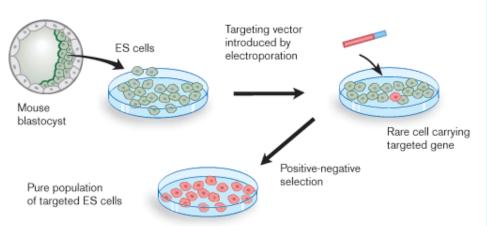
- ES cells injections, ES cell culture, karyotyping
- Pronuclear Injections (PNI)
- Programmable nucleases (TALENs, CRISPR/Cas9)

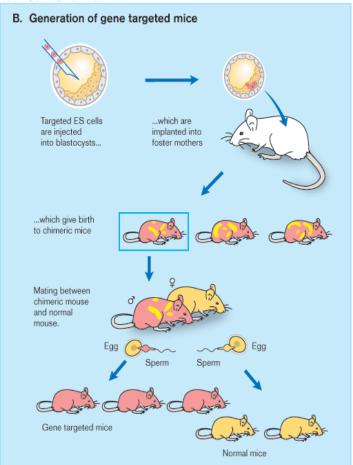
Irena Jeničkova, PhD
Head of ES cell manipulation and transgenesis

Equipment: Microscope with DIC, 2 micromanipulators incl. capillary holders, DNA injection pump

Ideal fragment size: 2-20kb, BAC constructs are much larger

DNA concentration: 1-3 ng/ul in microinjection buffer (7.5 mM Tris, 0.15 mM EDTA pH7.4)

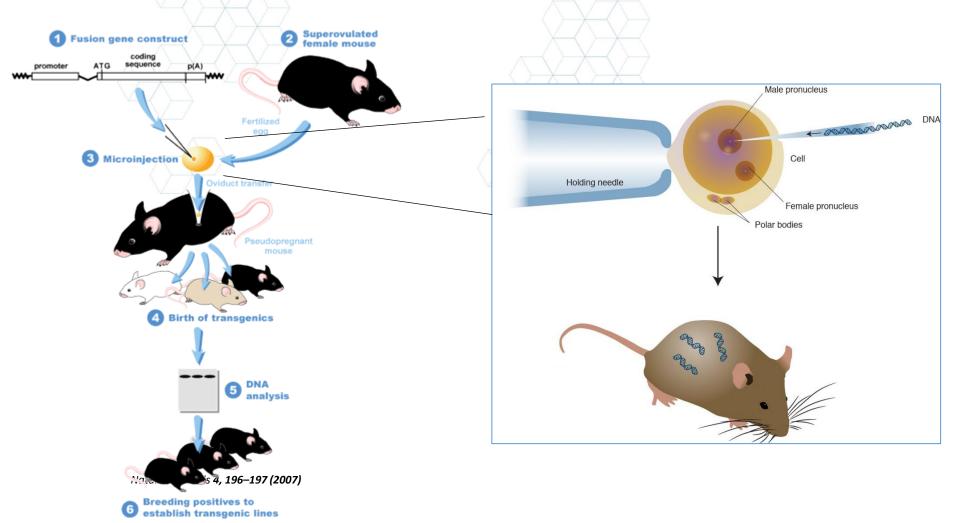




Generation of transgenic mice using ES cells

A. Gene targeting of embryonic stem cells

https://www.partners.org/researchcores/transgenic/transgenic/BWH.html

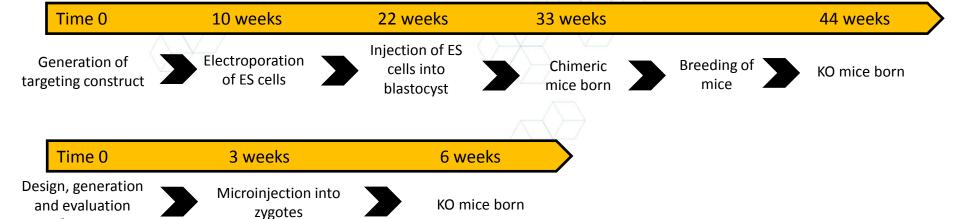


Rapid generation of transgenic mouse

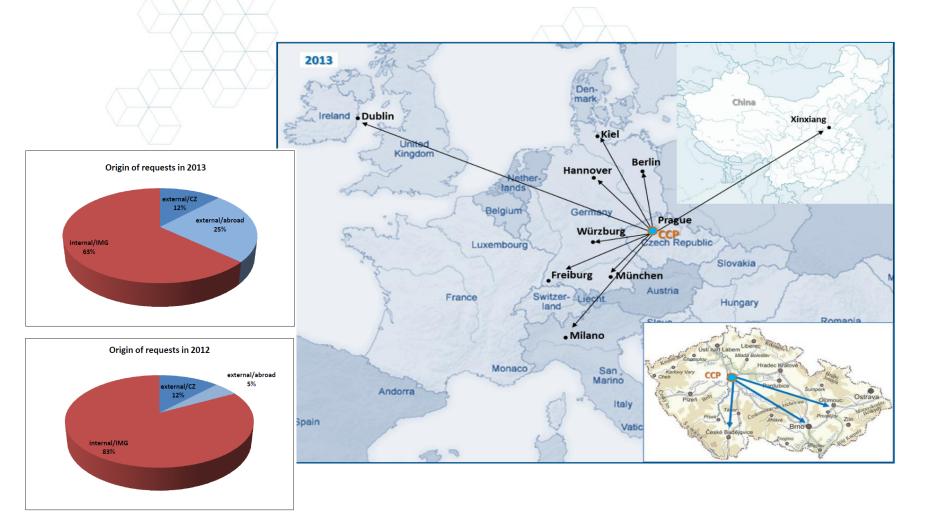
Pronuclear injection of TALENs and CRISPRs

for Phenogenomics

of TALENS



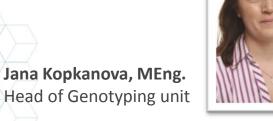
KO mouse generation by HR in ES cells vs TALEN technology:

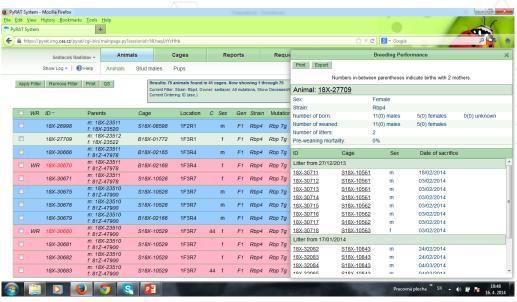


Production pipeline for 2015.

Gene Targeting using ES cells			Gene Targeting using CRISPR/Cas9		
Gene name	GLT, archived tm1a and tm1b		Gene name (cooperation with Sigma-Aldrich) in progress		
Farp1	EMMA		Asb4	Fam60a	
Btbd3	EMMA		Rhobtb1	1810011H11Rik	
Klk14	EMMA		Cep170b	2510009E07Rik	
Klhl5	tm1a	in progress	Rnf186	1810041L15Rik	
Eci2	EMMA		Trim9	Tmem60	
Mex3b	EMMA		March8	Fam83h	
Klk5	EMMA, tm2b		Trabd2b	Fam134a	
Rnf121	EMMA		1700026D08Rik	Lamtor4	
Papd7	EMMA, tm1a		Mzb1	Fam172a	
Trim15	EMMA		Tmem47	Tmem132b	
Nub1	EMMA	in progress	Fam64a	Fam126a	
Wdsub1	EMMA		Edrf1	Sbspon	
Stk26		in progress	Tmem196	Lppr5	
Tmem216		in progress	Coa6	Tmem132c	
Tmem237		in progress	1700017N19Rik	Brinp3	
Hepacam2		in progress	1700026D08Rik	Fam71f1	
Ndufs5		in progress	3425401B19Rik	Tmem88	
Fmr1nb			Fam84B	Tmem150b	
Gpatch2			Cluh	Tmem62	
Lpp			3110002H16Rik	Fam155a	
Pcp4l1			0610009O20Rik	Nwd2	
Shox2			Fam69c	Tmem240	
Strn4			Cipc	Tmem55b	
Abcg8			2210018M11Rik	Strip2	
Angptl3			Fam102a		

Mouse model generation service






1.c. GENOTYPING AND BREEDING

Head of Genotyping unit

1.d. ARCHIVING AND DISTRIBUTION

For individual requests and for the European Mouse Mutant archive (EMMA)

- When mouse strain is not longer needed for experiments or backup
- To reduce costs for animal housing
- To safe time for mouse colony organization
- To have a safe and controlled storage of your mouse strain over decades

Inken M. Beck, PhD Head of Archiving and distribution

Cryopreservation of mouse embryos

- For mouse lines that necessarily need specific mating scheme
- For fast and unproblematic recovery without using IVF

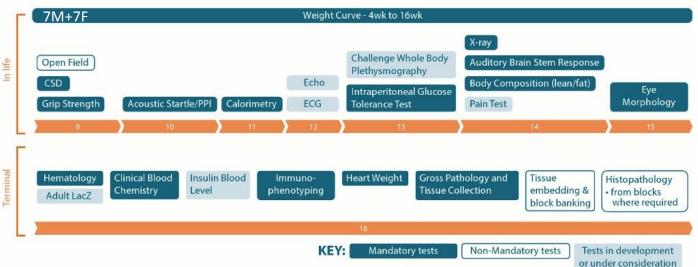
Cryopreservation of mouse spermatozoa

- For mouse lines that can easily be recovered by using WT donor oocytes (IVF)
- For lines that are kept as WT x Mutant crossing (classical transgenic mice)
- For lines that can be crossed Het x Het to obtain Homozygous mice

+ cleaning/rederivation of mouse lines via IVF or mating

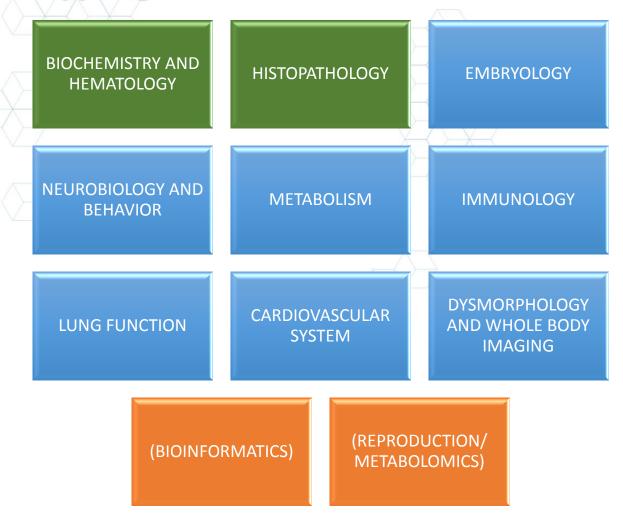
Archiving at EMMA is free of charge service
Strain will be made available for the community
and you still retain owner of the strain



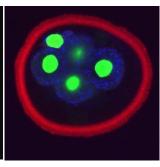


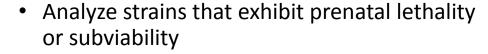
2. PHENOTYPING MODULE

Trevor Epp, PhDHead of Phenotyping module



Phenotyping units





- systematically examine and score embryonic and organ development relative to established morphological and molecular milestones
- identify the time window and likely causative factors leading to embryonic death

METHODOLOGY

- Immunohistochemistry and In Situ Hybridization (section and whole-mount)
- Alcian Blue/Alizarin Red staining of cleared embryonic skeletons
- Late gestation vascular anatomy (india ink)
- Beta-galactosidase staining
- Microcomputed tomography (coming soon)
- High resolution episcopic microscopy (coming soon)

2.b. Neurobiology and behaviour

Agnieszka Kubik-Zahorodna Ph.D. Head of Neurobiology and Behaviour

PRIMARY SCREEN

- Modified SHIRPA and dysmorphology evaluation
- Open Field animal emotionality and affect
- Grip Strength neuromotor abilities
- Acoustic Startle and PPI sensorimotor gating
- Auditory Brainstem Response
- Eye Morphology evaluation

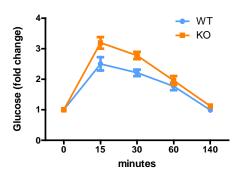
OPTIONAL AND/OR SECONDARY SCREEN

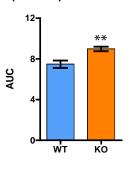
- Animal emotionality and affect
- Cognitive functions
- Neuromotor abilities
- Sensimotor gaiting
- Pain sensitivity
- IntelliCage
- Eye screen
- Auditory screen

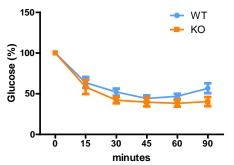


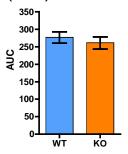
PhenoMaster (TSE)

- Indirect gas calorimetry
- Feeding & drinking
- Body weight
- Activity
- Exercise
- Telemetry


i.e. blood pressure, heart rate, core body temperature...






Glucose Tolerance Test (GTT)

Insulin Tolerance Test (ITT)



2.d. Lung function

screening of lung-function phenotypes

- dynamic resistance and compliance using plethysmography
- 'forced oscillation technique'
- challenges with or without aerosol or injection
- longitudinal studies with repeated lungfunction measurements in the same animal

Lung pathophysiology in models of pulmonary diseases

- asthma, pulmonary emphysema, pulmonary fibrosis or acute lung injury
- tailor made services, custom interventions (compound administration, surgery, ...)

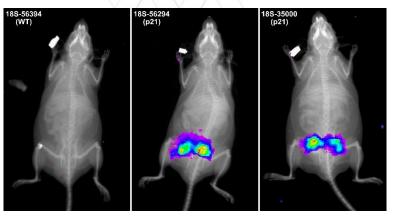
2.e. Cardiovascular system

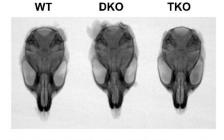
Primary screening

- Transthoracic echocardiography
 - Morphological abnormalities and systolic function of the heart
- Electrocardiography
 - assessment of rhythm abnormalities

Secondary screening

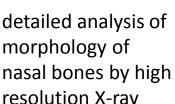
- Advanced emodynamic assessment by echocardiography (doppler flow)
 - Diastolic function, pulmonary and aortic flow
- Conscious restrained blood pressure measurement using tail-cuff

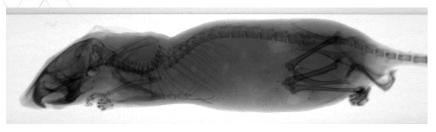




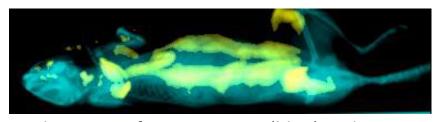
Jan Prochazka, PhD Head of Dysmorphology & Whole-Body Imaging

Bioimaging – luciferase expression in vivo




S56625

S56289

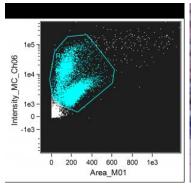

for Phenogenomics

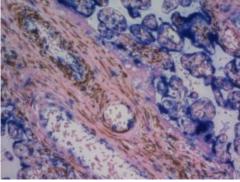
detailed analysis of morphology of nasal bones by high resolution X-ray

3D X-ray imaging of whole mouse

co-detection of X-ray imaging (blue) and fluorescence (labelling muscles in yellow)

S00TKO





2.g. Immunology

revealing of the etiopathogenic mechanisms of the immunological diseases using the transgenic mouse model

METHODOLOGY

- ELISA
- Microbead based assays
- Flow cytometry
- Imunohistochemistry
- In situ hybridization

2.h. Biochemistry and hematology

Karel Chalupský, Ph.D. Head of Biochemistry

ELECTROLYTES	Na, K, Cl, (LIH) -hemolysis
METABOLITES	Glucose, Creatinine, Lactate, Triglycerides, Cholesterol, HDL, LDL, Urea, Bilirubin, Mg, P, Ca, Fe, Uric acid, Glycerol, Unsaturated fatty acids, Bile acids
ENZYMES	ALP, ALT, AST, LDH, Amylase, Lipase
PROTEINS	Total, Albumin and multiplex analysis
HEMATOLOGY	Red blood cell count, white blood cell count, platelet count, hemoglobin, hematocrit and the complete differential white blood cell count

Multiplex assays

Limit of sample volume for classical Elisa 60ul of serum/ plasma up to 32 simultaneous assays

Commercial bead assays

CD40L	⊢IL-2	IL-18	MCP-1
Eotaxin	TL-3	IL-1β	M-CSF
bFGF	IL-4	IL-21	MIG
G-CSF	IL-5	IL-22	MIP- 1α
Ghrelin	IL-6	IL-23 p19	MIP-1β
GIP	IL-9	IL-25	MIP-2
GLP-1	IL-10	IL-27 p28	MIP-3α
Glucagon	IL-12 (p40)	IL-31	PAI-1
GM-CSF	IL-12 (p70)	IL-33	PDGF-BB
GM-CSF	IL-13	Insulin	RANTES
ICAM-1	IL-15	KC	Resistin
IFN-γ	IL-17A	Leptin	TNF-α
IL- 1α	IL-17F	LIF	VEGF

CCP bead assays

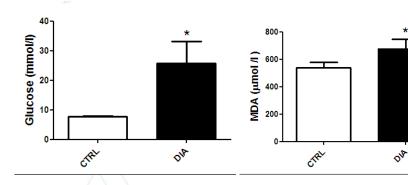
Amphiregulin Betacellulin HGF sIL6R

Custom bead assays

Available upon demand

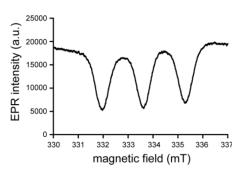
Oxidative stress

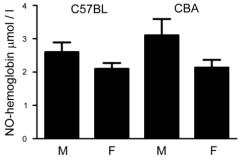
Detection of free radicals and their adducts


HPLC

ROS malonyldialdehyde

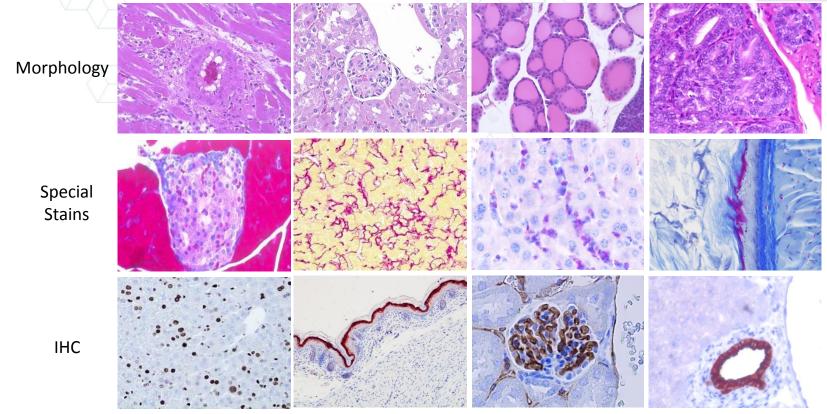
oxyethidium


RNS tetrahydrobiopterin


nitrotyrosine

Electron spin resonance

NO and superoxide in blood and tissues Differences in mouse strains



2.i. Histopathology

Ivan Kanchev, MVSc, DVM Head of histopathology

Gross pathology

STANDARD AND SPECIAL STAINS

Method	Performance
HE	Α
PAS	M+A
PAS+Diastase	Α
PAS+Alcian Blue	Α
Chromotrope 2R- Aniline blue	М
AZAN	М
Reticulin	Α
Giemsa	M
NASDCL	M
Massons Trichrome	M+A
Jones Methenamine Silver	Α
Grocott Silver Impregnation (GMS)	А
Pricrosirius red	М
Pricrosirius red trichrome	M
Congo Red	Α

IMMUNOHISTOCHEMISTRY

Target (Clone)	Species	Performance
Ki67 (Tec3)	Mouse	M
Ki67 (SP6)	Mouse	M
Glucagon (Poly)	Mouse	M
Insulin (Poly)	Mouse	M
CK19	Mouse	M
F4/80	Mouse	M
Pax5	Mouse & Rat	M
PCNA	Mouse	M
Caspase 3	Mouse & Human	M
CD31 (MM1)	Mouse	M
Glutamine Synthetase (Poly)	Mouse	M
aSMA (1A4)	Rat	M
Vimentin	Mouse & Rat	M
panCK (AE1+AE3)	Rat	M
eYFP (poly)	Mouse	M
HMW CK (Poly)	Rat	M

OTHER SERVICES: tissue microarrays

ACKNOWLEDGEMENTS

Radislav Sedlacek, Assoc. Prof., PhD (director)

Phenotyping Module

- Trevor Epp, PhD (head of module, phenotyping unit)
- Ivan A. Kanchev, MVSc, DVM (head, histopathology unit)
- Karel Chalupsky, PhD (head, biochemistry unit)
- Kallayanee Chawengsaksophak, PhD (head, embryogenesis
- Agnieszka Kubik-Zahorodna, PhD (head, neurobehavioral unit)
- Milan Reinis, PhD (head, immunology unit)
- Benoit Piavaux, PhD(head, lung function unit)
- Jan Polák, MD, PhD (head, metabolic unit)
- Jan Procházka, PhD (head, dysmorphology & whole-body imaging unit)

Transgenic and Archiving Module

- Inken M. Beck, PhD (head of module)
- Irena Jenickova, PhD (head, ES cell manipulation and transgenesis)

Jana Jezkova, MEng.

Veronika Libova, MSc.

Irena Placerova, MEng.

Sandra Potysova, MSc.

- Jana Kopkanova, MEng. (head, genotyping unit) Dana Kopperova, MSc. Monika Volckova, MEng.
- Bjoern Schuster, PhD (head, targeting unit) Anna Lastuvkova, MSc. Henrieta Palesova, MEng.

Animal facility module

Jan Honetschläger, DVM (head of animal facility) Peter Neradil, DVM (deputy head for Vestec animal facility) Marketa Rynekrova (deputy head for IMG animal facility)

CCP administrators

Libor Danek, MA Jana Safrankova, BA

OP EC projects

Team supported from OP EC CZ 1.07/2.3.00/20.0102 "Phenogenomics"

Sandra Potysova, MSc Martin Balastik, PhD Bjoern Schuster, PhD Inken M. Beck. PhD Jolana Tureckova, PhD Monika Cervinkova, PhD

Libor Danek, MA – project administrator Trevor Epp, PhD Jana Safrankova, BA – financial administrator Martin Gregor, PhD Radislav Sedlacek, Assoc. Prof., PhD - supervisor Karel Chalupsky, PhD

Jiří Forejt, Prof., MD, DrSc – supervisor Kallyanee Chawengsaksophak, PhD

Postdocs supported from OP EC CZ 1.07/2.3.00/30.0027 "Transgenesis":

Irena Jenickova (née Barnetova), PhD

Iryna Kozmikova, PhD Bohumil Fafilek, PhD Dominika Fricova, MD, PhD Michaela Krausova, PhD Silvia Petrezselyova, PhD Zuzana Ileninova, PhD

Vladimir Korinek, PhD - supervisor Miluse Hroudova, PhD Zbvnek Kozmik, PhD – supervisor Slavomir Kinsky, PhD

Jan Kosla, PhD

Radislav Sedlacek, Assoc, Prof., PhD - supervisor

Postdocs supported from OP EC CZ 1.07/2.3.00/30.0050 "Phenoimage":

Matej Durik, PhD

Iris Mercedes Manosalva Pena, PhD

Alzbeta Kalendova, PhD Chrysoula Pantzartzi, PhD Benoit Piavaux, MD, PhD

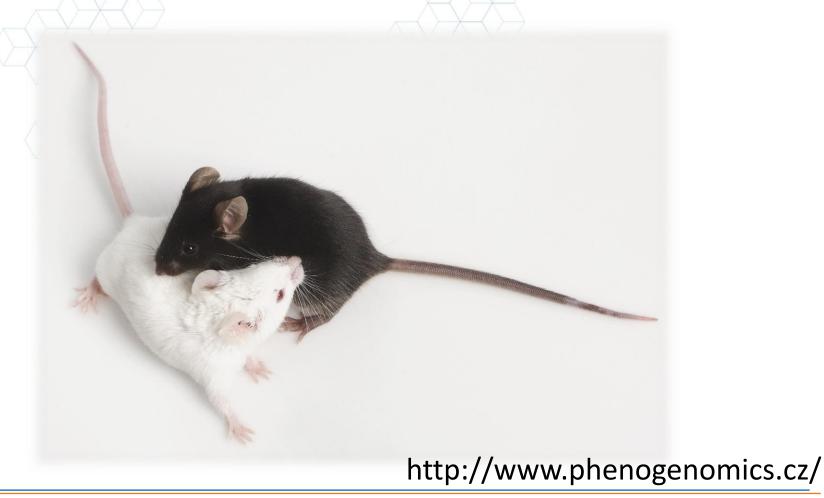
Jana Rohozkova, PhD

Kamil Matulka, PhD

Maja Sabol, PhD Tomas Venit, PhD

Pavel Hozak, Prof., PhD - supervisor Zbynek Kozmik, PhD - supervisor

Radislav Sedlacek, Assoc. Prof., PhD - supervisor



Thank you for your attention

contacts

- Director: radislav.sedlacek@img.cas.cz
- Transgenic and archiving module: inken.beck@img.cas.cz
 - Genotyping and breeding: jana.kopkanova@img.cas.cz
 - ES cell technologies and model production: irena.jenickova@img.cas.cz
 - Targeting: Bjoern.Schuster@img.cas.cz
- Phenotyping module: trevor.epp@img.cas.cz
 - Embryology: kchaweng@img.cas.cz
 - Neurology and behavior: Agnieszka. Kubik-Zahorodna@img.cas.cz
 - Lung function: piavaux@img.cas.cz
 - Dysmorphology and whole body imaging: jan.prochazka@img.cas.cz
 - Biochemistry: Karel.Chalupsky@img.cas.cz
 - Histopathology: ivan.kanchev@img.cas.cz
- Project managers: libor.danek@img.cas.cz, jana.safrankova@img.cas.cz

